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The theory of sound generation by weakly nonlinearly interacting ocean surface 
waves is examined. The main conclusion is that this mechanism may not be a strong 
generator of ocean sound. It is shown that at  low frequency and with small wind the 
sound generated by this mechanism is weak in comparison with that directly radiated 
by the turbulent airflow, the flow which is also the cause of surface waves. With 
increasing frequency and/or wind speed, the sound from surface-wave interactions 
becomes appreciable, but it is found that the condition for this sound overwhelming 
the aerial turbulence radiation implies the precise condition at which fully nonlinear 
surface motions occur. In  that case processes such as splashing of water sprays by 
breaking waves become the main cause of ocean noise. In fact it seems that the weakly 
nonlinear mechanism proposed by Brekhovskikh is never an important source of 
sound in the real ocean. 

1. Introduction 
This paper concerns the theoretical modelling of sound generation processes in the 

ocean. The problem is formulated as follows. The two fluids, air and water, are 
separated by an infinite interface above which there is a turbulent airflow. The airflow 
generates sound directly and also produces surface gravity waves. We seek to 
determine the influence of weakly nonlinear interactions of that surface wave field 
on the sound generation process. The basic equations, derived by following Lighthill’s 
(1952) procedure, are solved by making use of the method developed by Ffowcs 
Williams & Hawkings (1969) and Dowling, Ffowcs Williams & Goldstein (1978). We 
show that the underwater sound is caused by direct turbulence radiation, together 
with a surface-induced sound which, in the weakly nonlinear model, is proportional 
to the squared surface displacement. 

The sound from surface waves is quantitatively examined in $3. We derive a 
formula that relates the spectrum of sound pressure in deep water to the surface wave 
spectrum. Our result is in agreement with the Brekhovskikh (1966) theory, which 
ascribes background oceanic noise to weakly nonlinear interactions of ocean surface 
waves. Despite the progress achieved during the past two decades in developing and 
utilizing the Brekhovskikh theory to explain the mechanism of ocean noise generation, 
agreement between theory and experiments is still not completely satisfactory. In  
view of this and considering what seems to us a questionable ‘weak interaction’ 
presumption in the theory, a new look is needed to consider carefully whether this 
interaction mechanism is really responsible for the ocean noise. That is what has 
motivated this study. 
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An obvious weak point in the wavewave interaction theory is the neglect of the 
airflow that drives the waves. Urick (1967) has emphasized this point in the past and 
our theoretical treatment that follows is effectively a quantitative restatement of 
Urick’s view. The neglect of the airflow may not be adequate, because it also neglects 
a sound field radiated by that flow. This aerial turbulence radiation may sometimes 
be dominant over the surface-induced sound. To decide the relative acoustic radiation 
efficiencies of turbulence sources and surface waves, we calculate and compare the 
respective sound powers from these two kinds of sources. The incorporation of gravity 
into the Lighthill acoustic analogy enables us to examine analytically the surface 
wave field produced by the turbulent airflow. We suppose that the airflow is of finite 
extent so that Olbers’ paradox is avoided (for the concept of ‘Olbers’ paradox’, see 
Ffowcs Williams 1982). In  this way, our theory unambiguously includes the necessary 
basis for establishing the relative importance of the turbulence radiation and the 
sound induced by surface motions. We find that at frequency w the ratio of direct 
turbulence radiation to the sound field generated indirectly by the turbulence-induced 
surface waves is of the order lo3 x (g8/Lcau4w7) or los x (g4/Lcau205), corresponding 
respectively to the cases of w smaller and bigger than g/U.  L is the linear dimension 
of the turbulence source region, g the gravitational acceleration, ca the constant sound 
speed in air, and u and U respectively denote the r.m.5. turbulence velocity and the 
uniform wind speed. These results indicate that at low frequency and small wind 
speed, ocean noise probably arises directly from the turbulent airflow and not from 
the nonlinear interactions of surface waves. 

As frequency and/or wind speed increases, surface-induced sound becomes appre- 
ciable, because nonlinear effects in the surface deformation then become increasingly 
important. However the increase in wind speed soon causes surface waves to depart 
from the regime of ‘weak interaction ’. The Brekhovskikh theory is strictly applicable 
to situations where the ocean surface is continuous and single-valued, and the surface 
wave slope is much less than unity. High wind causes violent surface agitations that 
inevitably invalidate these two assumptions. We will deduce that the surface wave 
interactions can be important, compared with the direct aerial turbulence radiation, 
only at  frequencies much greater than 15.4(g4/Lca u2)f. But this requirement always 
implies the precise condition for surface waves to be in a fully nonlinear state where 
they break, that is, o $2.2(g/ua)  (u2,/gL)f, u* being the friction velocity (Phillips 
1977). In  this situation the Brekhovskikh theory fails. Noisy processes such as 
splashing of water sprays on the surface then become the dominant cause of 
underwater sound. This leads us to conclude that, in the natural ocean, weakly 
nonlinear interactions between surface waves are probably not significant sources of 
underwater sound. 

2. Formulation and solution of the hydroacoustic problem 
We consider a turbulent airflow over the ocean surface whose undisturbed position 

coincides with the plane y3 = 0 of a Cartesian-coordinate system y .  We incorporate 
gravitational effects and ignore viscosity in writing the appropriate form of Lighthill’s 
(1952) acoustic analogy in the airflow as 
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is the Lighthill stress tensor. The subscript a is used to denote quantities in air. 
Pressure and density perturbations are over the mean values p(y , )  and P(y,)  which 
are determined by hydrostatic relations, and g is the value of the gravitational 
acceleration. 

The governing equation in water can be similarly written with the subscript w 
symbolizing quantities in water. We restrict ourselves to the situation where motions 
in the water body are essentially linear, so that the Lighthill stress tensor there 
vanishes and the basic equation is 

a 2  c : v 2 - g - ) p ;  a = 0. 

(57- 3Y3 

We ignore the Lighthill stress tensor in the water body because it can only induce 
very weak acoustic sources. If the surface waves are only weakly nonlinear, the 
quadrupoles in the water body, as well as the dipoles on the water surface which, 
as will be seen shortly, result from the inclusion of weak nonlinearity in the boundary 
conditions at the surface, have a strength proportional to the square of that wave 
field. Considering that the quadrupoles occupy a layer of thickness of the same order 
as a typical surface wavelength, it is evident that the quadrupoles are less efficient 
than the dipoles by the typical Mach number of the water elements times the typical 
surface wavelength divided by the much larger acoustic wavelength. Hence the 
quadrupoles can be discarded. Now we define a generalized function f(y, 7) in such 
a way that it is positive in air and negative in water. The air-water interface can 
then be expressed as f(y, 7) = 0 and the kinematic and dynamic conditions on the 
interface can be written as 

-- DAY, T I  - 0, pa = p ,  on f(y,7) = 0. 
D7 

Equations (2.1), (2.2) and (2.3), together with conditions at infinity, formulate the 
problem uniquely. To solve it we follow the method developed by Ffowcs Williams 
& Hawkings (1969) and Dowling et al. (1978), and introduce a generalized function 
H { f ( y ,  7)}, equal to one in air and zero in water. We multiply (2.1) by H, transfer it 
through the differential operators and re-arrange terms by using the equations of 
motion and the condition Df/D. = 0. As a result, an equation can be derived for the 
generalized function H p i ,  

This is essentially the Ffowcs WilliameHawkings equation except for the extra term 
proportional to g ,  which accounts for gravitational effects. It has been deliberately 
retained because of its importance in the production of surface waves. 

We choose to work with the Green function G(y, 7/x, t )  defined by the adjoint form 
of (2.1) with the source term vanishing, that is, 

where G is assumed to be incoming a t  (ya,  7 )  infinity and y3+ + 00. Multiplying this 
equation by HpL and integrating it over the whole (y, .z)-space, we find after some 
partial integrations 
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The foregoing procedure also applies to (2.2) which governs motions in water if i t  
is multiplied by a generalized function defined by (1 - H). The similar result is then 
found to be 

where G(y, ~ / x ,  t )  is defined by the equation 

c:V2+g- G ( y , ~ / x , t )  = &(y-x ,~- t t ) ,  (2.7) a >- (P- 3Y3 

a 2  

with incoming behaviour at (ya, 7 )  infinity and y3+- a. The addition of (2.5) and 
(2.6) immediately gives the density fluctuation in the water, 

The last two terms, containing derivatives of H, can be transferred into surface 
integrals by making use of properties of generalized functions (see Ffowcs Williams 
& Hawkings), which yields 

where ds is the surface element on f d y ,  7 )  = 0. 
To simplify this result, we use the condition p ,  = pw on f(y, 7 )  = 0 and regard the 

air-water interface as being slightly disturbed from its initial position y3 = 0 so that 
f(y, 7 )  = y3 - [(y,, 7 )  is continuous and single-valued, 5 being the surface displacement 
and ya the horizontal coordinates. On this account, the surface integrals can be 
projected from the curved surface y3 = onto y3 = 0 by noticing that ds/lVfl = d2ya. 
Hence we have 

where the surface integration is to be performed on the plane y3 = 0 but its integrand 
F is calculated at y3 = 5, F being given by 

(Here the overbar above p and p denotes mean values that depend on y3.) This 
function can be expanded from y3 = 5 to y3 = 0 in a Taylor series. The convergence 
of this expansion is guaranteed provided that the surface wave slope is much less than 
unity. Carrying out this expansion and integrating the results by parts, it is found 
that 
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where 

with pa and pw respectively denoting the mean densities of air and water on the 
undisturbed interface. In  deriving this result, the Taylor expansion of F has been 
truncated after the term proportional to $. This is justified by ,the fact that the 
ignored terms are smaller than the remainder at least by a factor equal to the surface 
wave slope that is much less than unity. Terms explicitly smaller by the factor g/wcw 
which is less than 0.01 for frequencies above 0.1 Hz, w being the angular frequency, 
or by the ratio pa/pw x have also been neglected. 

In F,, the first two terms are linear in the perturbation variable. They often pose 
a difficult task in interpreting the final solution so that it is appropriate to eliminate 
them by imposing conditions on G and 8. Obviously, it is required that 

aG aG _ -  -- 
aY3 aY3’ 

and 

on y3 = 0. The Green functions G and 0 are also uniquely determined by these two 
conditions, together with their defining equations (2.4) and (2.7). They can be found 
by Fourier transformation. The derivation is straightforward, but tedious in algebra, 
so that we will not give the details here but simply claim that we find 

and 

where k, and w are, respectively, the two-dimensional wavenumber and the angular 
frequency ; y2 = ( w / c ) ~  - k: - ( 9 / 2 ~ ~ ) ~  with appropriate subscripts. The roots of y are 
determined by the incoming behaviour of the two Green functions; when real they 
have the opposite sign to w ,  while when purely imaginary Im (ya) and I m  (yw) are 
always positive. Fn and Fd are given by 

and 

11 F L l  181 
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With this determination of G and 8, the linear terms in 4 all vanish. Hence we 
have 

where all quantities are evaluated at y3 = 0 . 4  can be simplified still further by careful 
dimensional analysis, which reveals that the last term is the leading term. This 
becomes apparent once we scale the pressure fluctuation pd, on the mean position of 
the water surface as of order pw gg, which results from the momentum equation, as 
will be seen at  the beginning of $4. The first nonlinear term is then smaller than the 
leading term by the ratio of the surface wavelength to the acoustic wavelength. The 
second is negligibly small because 

Integrating the second term of (2.8) by parts and making a transfer of the 
y,-derivative onto the Green functions, i t  can be seen that it is smaller than the 
leading term by the small factor g/ocw. 

In examining the effect on sound generation of nonlinear deformations of material 
surfaces, Howe (1985) derives a result similar to (2.8), but he identifies the second 
term as dominant. This is not the case in our ocean-sound problem. The ocean depth 
in our problem is assumed infinite (or much bigger than the acoustic wavelength), 
which is different from Howe's problem where the fluid under the turbulent flow is 
a thin layer with a rigid lower boundary. By assuming a depth h for our ocean 
problem, the foregoing analysis can be similarly carried out and it can be shown that 
the ratio of the third to the second term in (2.8), letting gravity vanish (to be 
consistent with Howe's problem), is of the order sin(hw/c,). In Howe's case, he 
supposes that h / c w  -4 1 so that the second term is dominant. But in our problem, 
h / c w  is very much larger than unity. Hence these two terms are of the same order 
even in this gravity-free situation. Furthermore, since we are considering gravity 
waves, pd, in our problem can be definitely scaled on pw gc, which allows the second 
term in (2.8) to be converted into a divergence form as shown by (2.9), that 
degenerates further to a higher order. The third term can then be identified as the 
dominant term. Hence the solution can eventually be written as 

P2.7 t )  = P t ( X ,  t )  + P S ( K  t )  

where 

and 

(2.10) 

(2.11) 

Here pt is the density fluctuation caused by the turbulent airflow and ps is that 
induced by surface waves, which, in the weakly nonlinear model, is an integral on 
the mean position of the ocean surface and involves only the square of the surface 
elevation. 
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3. Sound from surface waves in the Brekhovskikh scheme 
The theory of sound generation by weakly nonlinear interactions of ocean surface 

waves was first derived by Brekhovskikh (1966). Some others (e.g. Hughes 1976) have 
used slightly different methods to approach the problem, but the basic mathematical 
procedures and their main results are the same. A small parameter perturbation is 
used to convert the hydrodynamic equations to a series of linear equations of different 
orders, and a Taylor expansion transfers the boundary conditions from the moving 
surface to its mean position. When only second-order equations are considered (the 
weakly nonlinear assumption), this theory relates sound to a surface wave field in 
a quadratic way. This Brekhovskikh procedure is different from that of the previous 
section where, by making use of an appropriate form of the Lighthill acoustic analogy, 
we have also derived an expression for the surface-induced sound in terms of the 
squared surface displacement, but the surface term is no longer alone. Since we will 
discuss the relative importance of the weakly nonlinear interaction mechanism by 
making use of our results, it is appropriate to first establish the identity of our 
surface-induced sound to that in the Brekhovskikh theory. 

In  the previous section, we have derived the wave field in the ocean under a 
turbulent airflow in terms of the Green function G. At this stage, the effect of gravity 
can be made clear by examining this Green function. For every real ka and w ,  the 
integrand of G has a singularity (Eld has a zero) which is found near glkal = w2. 
Obviously this singularity gives rise to gravity waves. Hence the turbulent airflow 
not only radiates sound but also induces ocean surface waves, both of which are 
contained in our theory which therefore should include the basis for establishing their 
relative importance. Apart from this introduction of surface waves, gravity does not 
seem to be important. This simplifies the problem considerably; terms explicitly 
proportional to g can be omitted in the sound field provided that we bear in mind 
the implication of the existence of gravity surface waves. On this account, the sound 
pressure caused by surface motions can be written from (2.11) as 

The autocorrelation function of this pressure field can be obtained by multiplying 
it by itself calculated at  t + t‘, t’ being the time separation, and averaging the result. 
Then a Fourier transform with respect to t’ gives the frequency spectrum, which we 
denote by <(x, w ) ,  

where yz is the complex conjugate of yw ; IzI is the modulus of z and N is a fourth-order 
cross-correlation function of the surface displacement, defined by 

9 7’ )  = C(ya, 7 )  P ( y a  + y:, 7+ 7’ ) .  (3.2) 

In this, we have assumed that the surface wave field is both homogeneous and 
stationary, so that N depends only on the space and time separations. 

From the definition of yw, it  can be deduced that 

11-2 
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H denoting the Heaviside unit function, so that (3.1) can be rewritten as 

p,(x,  w )  = - exp [i(k, yi + WT’ ) ]  

x [.g- ki) + H (ki -5) exp (2 (ki -$)‘x3)] dzku d2yi d7’. 

Since we are concerned here with the sound field in deep water, this result can be 
simplified by letting ( -x3) be very large. Then the second term in the square bracket 
is negligible and the power spectrum is independent of x, that is, 

For homogeneous and stationary ocean surface motions (both the wind fetch and 
duration being large), the surface displacement c can approximately be regarded as 
specified by a normal distribution (Phillips 1977). We further suppose that the joint 
distribution of 5 at two points is also normal. Then by following Batchelor’s (1959) 
scheme, we find 

NyL, 7’)  = (W, 0)l2+ 2(n(Yi, 7’)12, 

nc?L 7 ’ )  = C(Y,, 7 )  Y(Y, + 7 + 7 ’ ) .  

(3.4) 

where 17 is the cross-correlation function of the surface wave field, 

(3.5) 

The contribution to e ( w )  from the first term on the right-hand side of (3.4) is zero 
unless k, and w vanish (which is not a consideration of our problem) so that (3.3) 
becomes 

Because of the Heaviside function, the integration with respect to k, is actually 
restricted to the acoustic domain lk,l < )wI/cw, in which we have 

which gives 

where terms smaller by g2/w2c& or pJp, have been neglected. The k,-integral can 
now be evaluated explicitly as 

with Jo and J ,  being, respectively, the zeroth- and second-order Bcxscl fuiictiotis. 
From this it follows that 
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In this integral the maximum value of y i  can be replaced by the coherence length 
of the surface waves; 17, is negligible for large value of y;. Hence y i  is at most equal 
to the surface wavelength so that IyJw/cw is of the same order as the ratio of the 
surface wavelength to the acoustic wavelength, which is usually very much less than 
unity. Thus the bracket in the integrand is effectively equal to one and the power 
spectrum becomes 

e(w) = 4(2*)4c$ w6 Lqo, w )  * n(0, w ) ,  

where the symbol * denotes the three-dimensional convolution and n(q,,Q) is the 
Fourier transform of (3.5) and is related to the mean square surface displacement by 

Nonlinear surface motions generate a sound whose power spectral density P&) 
is independent of position. This sound is identical to the result obtained by Hughes 
(1976) who analysed this problem through the method of small perturbations in line 
with the Brekhovskikh scheme. This is the sound field that would be generated by 
weakly nonlinear interactions of ocean surface waves bounded above by a linearly 
disturbed atmosphere. This result does not seem to explicitly contain any singularities 
of the kind that lead to Olbers’ paradox. This is because the natural surface wave 
speed (approximately equal to g/w) is much smaller than the sound speed so that the 
singular peak at Fd(k,, w )  = 0 of the spectrum (3.1) is confined to  surface waves which 
decay exponentially with depth. However, (3.6) still implies a singular field because 
the surface wave field 17, driven by the turbulent airflow, is assumed both homo- 
geneous and stationary in the entire physical space. This kind of surface motion can 
only be induced by a turbulent flow that itself is also homogeneous and stationary 
and of infinite extent. Such a problem is ill-posed; surface waves under an infinite 
region of turbulence have formally an infinite amplitude (which will be demonstrated 
in the next section). The sound field generated by this ‘infinitely big’ surface wave 
field will then also be infinite, or more precisely also ill-defined. To account for this 
problem correctly, it is necessary to assume that the turbulent sources have finite 
extent. 

4. Surface waves induced by a finite region of turbulence 

derived from the results of $2, 
In  linear theory, pressure fluctuations caused by the source distribution qj can be 

x ei(Y,Y,-Y,za) e-ilka(Ya-s,)+o(r-t)I d3y d7 dak dw, 

where d ,  = -ikl, d,  = -ik, and d,  = g/2c:+iya. Alternatively, this pressure field can 
be expressed in the (ka--w)-space by the Fourier transform of p, which we denote 
by 9. To find the surface displacement, we first derive the pressure fluctuation on 
the mean water surface by letting x3 vanish, 
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Because we are considering motions in the water that are essentially linear, the 
momentum equation in the vertical direction, pw au,/at + ap/ax, + gp/ck = 0, and 
the linearized boundary condition u, = a[ /at  on x3 = 0, can be used to relate p 
to the surface displacement [. It can be shown that 

where t is the Fourier transform of g. This result can be used to justify the scaling 
law pk - pwgg used in $2. The pressure fluctuation (4.1) comes predominantly from 
gravity waves; the spectrum is peaked at Fd(ku, w )  = 0, which gives approximately 
yw = iw2/g. This immediately reduces (4.2) to # - pw ge, or equivalently p k  - pw 95. 
Now on substituting (4.1) into (4.2) and taking the inverse Fourier transform, we find 

(4.3) 

where G, is given by 

We calculate Ggj through the use of the residue theorem. The dominant contribution 
arises from the singularity Fd(ku,w) = 0, which gives rise to gravity waves. The 
contribution from the branch points ya = 0 and yw = 0 is negligible because it 
corresponds to sonic waves and decays more rapidly with distance from the source 
than gravity waves. From another point of view, those sonic surface waves, 
independent of gravity, can be neglected since we are seeking to determine the effects 
on sound generation of gravity waves. The position of the singularity can be 
determined by solving Fd(ka, w )  = 0 iteratively in powers of pa/pw. The leading term 
shows that g1kJ x w2,  a t  which Gij can be calculated in terms of Hankel functions 
which we express according to 

(4.4) H$?(z) = (3 - exp (-i[z-!jm-$]). 

This approximation is valid provided IzI is large, which is the case of our problem 
for reasons that will shortly be apparent. The singularity at glkJ x w2 clearly 
demonstrates that the surface waves in our model are generated by a resonance 
mechanism as described by Phillips (1977). When the variations of the turbulence 
sources coincide with that of the natural surface waves, a wave field is excited. In 
our model the turbulence sources are essentially decoupled from the wave field. This 
necessarily implies that the surface waves are in a very early stage of their evolution 
so that the assumption of weak nonlinearity can be imposed. Hence we have 

where sgn(w) denotes the sign function and 9, are directional factors defined by 
9, = yl/Iyal, g2 = y2/lyua( and 9, = -i. Now we multiply (4.3) by itself calculated at 
the space and time separations, xl and t ' ,  and take the Fourier transform with respect 
to them. This gives the three-dimensional surface wave spectrum 

n 

f?(ku, w )  = (2x)'J H q , H G ,  G,(w) G&,( - w )  exp [i(kax~+w~')]d3yd3y'd7'dx~, 
00 

(4.6) 
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where G;, and Tkt are calculated at  (yu+y:,yj,r+i-'), and k, and w are now 
understood to be the surface wavenumber and frequency. 

The exact calculation of (4.6) is very complicated and probably not necessary for 
our purpose. Our ultimate concern is the sound generated nonlinearly by surface 
waves. This kind of sound production is possible only when the surface source motions 
have supersonic phase velocities. In the weakly nonlinear theory, the phase velocity 
of the product exp{i(w,t+k,x)} and exp{i(w,t+k,x)} is equal to the sum of the 
frequencies divided by the sum of the wavenumbers of the two interacting surface 
waves, that is (w,+w,)/(k,+k,). It exceeds the sound speed when the interacting 
gravity waves have nearly the same frequencies but travel in almost opposite 
directions ; w1 + w2 is then approximately twice the individual frequency and k, + k, 
is very small. Hence we only need to know the surface waves that travel in opposite 
directions right below the turbulent airflow. It is this surface wave field that can 
interact to generate sound; those other waves that are far from their sources are all 
outgoing and provide very weak acoustic sources. This point considerably simplifies 
the calculations. Since interacting surface waves right below the turbulence are 
mostly generated by distant sources, it is reasonable to concentrate on the contri- 
bution from the integrated effects of those sources. This justifies the use of the 
approximate relation (4.4), since the turbulence source region is very much bigger, 
in dimension, than the surface wavelength, lyal w2/g  & 1, and also, bearing this in 
mind, we can suppose that Iy,l & IxuI so that from (4.5) 

The surface wave spectrum (4.6) then becomes 

d2xid2yud2yidy,dyj 

where s i j k ,  denotes the Fourier transform with respect to 7' of the source function 
H T j  HT;,, namely, 

St,,, = Jw H q j  H!& eim' dr'. 

It is now very clear that, because of the divergence of the y,-integral, the surface 
wave field is infinite if the source region is of infinite extent. If we assume the 
distribution turbulence sources to be over a region of large but finite extent L, 
homogeneous and stationary over Iy,l < L and vanishing outside, the surface waves 
can be found by first calculating the xL-integral, which gives the result in terms of 
&-functions, and then performing the y,-integrel in this finite region. This procedure 
leads to 

where b, = (g/w2) k,, b, = (g/w2) k, and b, = -i, and x t j k ,  is an integrated source 
function defined by 

(4.8) 
xtjkl = Stjkl e x p ( g ( Y 3 + y , ) + i k a Y ~ ) d Y 3 d Y ; d 2 Y ~ .  - 0 2  

00 
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Equation (4.7) is the main result of this section. It shows that the surface wave 
spectrum, and hence the mean square surface displacement, is proportional to the 
linear dimension of the source region. With this we can unambiguously discuss the 
sound from surface wave interactions, which we do in the next section, after first 
estimating the r.m.s. surface displacement from (4.7) and comparing it with experi- 
ments to  establish the relevance of our surface wave model. This is done by 
integrating (4.7) over k, and o, which yields the mean square surface elevation as 

where Aijkl is a factor resulting from the k,-integration and is of order one (for 
example, it is exactly equal to  one when i =j = k = I = 3). We non-dimensionalize 
the integral by introducing, for the turbulence sources, the typical timescale to, 
frequency wo = 2xc/t0, lengthscale I and the vertical dimension of the source layer A .  
We also scale the source HT,,, HT;, as piu4, u being the r.m.s. turbulence velocity. 
Hence we find 

P W  

(4.10) 

I n  this result the timescales and lengthscales are those of turbulence sources. They 
can be related to  parameters in the wave field. I n  an  active wind-induced surface wave 
field, the dominant waves move at a phase speed nearly equal to  the wind speed U ,  
that  is, their wave period is of the order 2 x U l g .  I n  linear theory these waves must 
have been generated by those elements of the turbulence sources which have a 
matching timescale. Hence we have to - 2 x U / g .  Consequently the lengthscale 2 is 
approximately 2 x V / g .  The height of the source layer can be determined by 
examining (4.9). Because of the exponential factor in the integrand, only those 
sources adjacent to the water surface to  within one wavelength have significant effects 
on surface wave production. The effective height A of the source layer can then be 
regarded as the lengthscale of the dominant waves, namely, 2xU2g. With all these 
considerations, (4.10) simplifies to 

In  the turbulent airflow we can regard the r.m.s. velocity u as being of the same order 
as the friction velocity u,, so that ( U / U ) ~  x ( u , / U ) ~  x (1 - 3 )  x is actually the 
drag coefficient. Thus the r.m.s. surface displacement is 

(4.11) 

This model is consistent with observations. A comparison can be made with the result 
summarized by Phillips who derived a formula from experiments, 

(Phillips 1977) where C is a constant of the order (8.7 - 12.6)  x The r.m.s. 
turbulence velocity u in (4.11) is of the same order as u*. It is then clear that (4.11) 
is close to Phillips' result. 
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5. Relative magnitude of the nonlinear interaction sound 
In  the Brekhovskikh theory, the atmosphere is supposed to be in a static state. 

But what is the effect and importance of higher-order terms in air ? The neglect of 
the turbulent airflow may not be adequate because the aerial motions are not only 
the cause of surface waves, they also contain direct sound sources. This direct 
radiation may sometimes be the dominant sound. We examine in this section the 
relative magnitude of the noise from this aerial turbulence and the sound generated 
indirectly by surface waves. To do so, we calculate and compare the respective 
contributions to the sound power from unit area of turbulent sources and surface 
waves. 

From the results of $2, the sound pressure due to turbulence, which we denote by 
p,, can be derived from (2.10) as 

x e-i[k,(y,-s,)+W(T--t)l d2k dwdsy (5.1) 

To calculate the sound power from a finite region of turbulence, it is sufficient to know 
the sound pressure far from the source region. This allows the use of the method of 
two-dimensional stationary phase (Jones 1982) to evaluate the k,-integral, the result 
of which is the asymptotic solution of (5.1) as 1x1 + 00, 

y,-lxl)+iw(t-~) 

where 2, = z,/lxl, 9, = z,/lxl and 23 = - (ck/c:- Ix,12/lx12)k From this the mean 
square pressure can be found as 

where qjkl is an integrated source function similar to &jkl, 

q j k l  = s$jkl exP[i~(f3(y3-Y6)-~,y:)]d2Y~ dy3dy6. 

The sound power can now be calculated by dividing (5.2) by p, c, and integrating 
it over a hemisphere centred at the origin. Furthermore, we divide the result by nL2, 
the area of the turbulent source region, and drop the w-integration. This gives the 
sound power from unit area of turbulence in unit frequency band, which is denoted 

with Bijkl a factor of order one (similar to At,kl and equal to one if i = j = k = 1 = 3). 
We still let 1 be the correlation length in the source region and A the effective height 
of the turbulence source layer, and scale d2y:dy3dyj as P A a  and &jk, as p:u2(o), so 
that the integral in (5.3) is of the order p: Z2A2u4(w), which leads to 
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Sound power radiated by surface-wave interactions can be similarly found from 
p, ,  the sound pressure due to surface waves, 

from which the mean square pressure is found to be 

- nL2pk 2; 
p:  = 4 ( 2 ~ ) 3  1x12 c; 

where N(yi ,~ ' )  is defined by (3.2) and we have taken the source region as nL2, the 
same as that of the turbulent sources, because only in that region can surface waves 
interact. Following the same procedure as that in calculating W,(w) and making use 
of (3.4) for N(yL, T'), we deduce that 

where W,(w) denotes the sound power from unit area of surface waves in unit 
frequency band and I7 is defined by (3.5). This result can be rewritten in terms of 
n(qa, a),  the surface wave spectrum, namely, 

x exp [ - i(qa + 7;) yi] d2yi d2qa d2qi dQ. 
Again, since the source function in this result vanishes when Iyil exceeds a surface 
wavelength, the argument of the Bessel function Jo is at most of the same order as 
the ratio of the surface wavelength to the acoustic wavelength, a factor usually very 
much less than one, so that the Bessel function can effectively be replaced by one 

(5.5) 

For a finite region of turbulent airflow, we have derived the surface wave spectrum 
in the form of (4.7). The sound generated by these surface waves can then be 
calculated by directly substituting (4.7) into (5.5), which yields 

Xtjkl  bt 'j bk bl x h n p q  bm bn b p  bq d2qa dQ 
where the dash implies that the function is evaluated at ( -  qa, w-Q) .  The &-functions 
can now be used to carry out the integrations, with the result 
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the integrand being calculated at  ql = (w2/4g) cos$, q2 = (w2/4g) sin$ and G? = ?p. 
From the defining equation (4.8) of X i j k l ,  it is apparent that the scaling of dy, and 
dyj is determined by the smaller value of the surface wavelength scale g/w2 and the 
effective height A of the turbulence source layer; if g/w2  is smaller the exponential 
factor in the integrand makes those sources more than a surface wavelength away 
from the air-water interface contribute a negligible part and hence dy, dyj - g2/w4 ; 
on the other hand, if A is smaller, dy, dyj must be scaled as A2 because the integrand 
SUkl is then itself negligible for sources more than A away from the surface. 
Considering all these, we find that the integral in (5.6) can be scaled as 

\27c[pi u4(w) Z2A2l2 when I < -, 9 
w2 

Hence the surface wave generated sound power W, becomes 

In (5.7) and (5.Q the high powers of w seem to be a startling result. It becomes 
less surprising once it is recognized that W, is related to the fourth power of the surface 
displacement, through (5.5), which itself is proportional to the square of the surface 
wavenumber because of the quadrupole property of the turbulence sources. In  this 
way W, has already been related to w to the sixteenth power (the surface wavenumber 
scaling approximately on w2/g) .  It is not inconsistent with the governing equations. 
Actually i t  is well known that at low frequencies surface wave spectrum grows very 
rapidly to a peak as frequency increases (Phillips 1977). The low-frequency sound 
generated by such surface waves can also be expected to have a rapidly increasing 
low-frequency spectrum but the actual dependence of W, on w is almost impossible 
to check quantitatively because the dependence of u4(w), 1 and even possibly L on 
frequency is probably important but unknown. For the same reasons, the dependence 
of W, on w in the high-frequency region is probably never as high as the 'fifteenth 
power', as i t  seems to be in (5.8). 

Having found the sound powers from unit area of turbulence and of surface waves 
respectively, we can now compare their relative importance. First we examine the 
case 1 < g/w2, which corresponds to the low-frequency situation because the 
turbulence coherence scale 1 is of the order U / w ,  and the condition 1 < g/w2 then 
becomes w < g / U .  Combining (5.4) and (5.7), it follows immediately that 

If we scale 1 N A on U / w  and write u4(w)  in terms of the r.m.s. turbulence velocity 
u in the physical space, (5.9) is then equivalent to 
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This result can be alternatively expressed in terms of the r.m.s. sound pressure, 

(5.10) 

It is easy to show that this ratio is always bigger than one when U > 1 m/s and 
L < lo6 m, which can be regarded as being the case in the real ocean. This implies 
that the aerial turbulence radiation is always dominant over the surface-induced 
low-frequency sound. 

Now we consider the case 1 > g / w ,  or w > g / U .  From (5.4) and (5.8), we have 

Again assuming 1 - A ,  this becomes, in terms of the r.m.s. sound pressure, 

9 94 when w > - 
pa Lc, w5u2 U '  

(5.11) 

The results (5.10) and (5.11) reveal the relative acoustic radiation efficiency of the 
turbulence sources and surface waves. Their relative importance depends upon 
frequency, wind and the fetch of the turbulent airflow. At low frequency and small 
wind (the fetch correspondingly also small), the turbulent airflow is the dominant 
cause of underwater noise. In this case direct turbulence radiation overwhelms the 
surface-induced sound and weakly nonlinear interactions of surface waves play a 
negligible role. This confirms a conclusion discussed elsewhere (Guo 1987) ; sound and 
surface waves in this situation are essentially linearly related. It is their common 
source, the turbulent airflow, that gives their potential inter-connection; they are not 
cause and effect. 

As frequency and/or wind speed increases, sound from surface wave interactions 
quickly becomes more important than that from the aerial turbulence. This is because 
high wind deforms the air-water interface more vigorously and nonlinearity becomes 
manifest. However the increase in wind speed limits also the applicability of any 
'weakly nonlinear ' theory. The Brekhovskikh theory suffers from two severe 
restrictions; it requires the ocean surface to be continuous and single-valued, and the 
surface wave slope to be much smaller than unity. These premises will inevitably be 
violated, as wind speed increases to vigorously agitate the air-water interface. High 
wind causes surface waves to depart significantly from being 'weakly nonlinear ', This 
becomes even clearer in terms of frequency. At high frequencies the relative 
magnitudes of turbulence sound and surface-induced sound are given by (5.1 l),  from 
which it is apparent that the surface wave generated sound becomes appreciable, in 
comparison with the direct radiation from aerial turbulence, only in those high 
frequency regions where 

w + 1 5 . 4 ( L r .  Lca u2 

The right-hand side can be re-arranged so that 

(5.12) 

where we have replaced the r.m.s. turbulence velocity by the friction velocity. It can 
be shown that the first factor in this inequality is always bigger than, but of the same 
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order as, unity, in all practical situations, its minimum and maximum value being 
respectively 1.03 and 6.06 in the wind-speed range of 0.01-50 m/s and wind fetch 
range of 0.1-10’ m, which obviously includes all possible circumstances in the natural 
ocean. Hence the condition (5.12) implies 

This is the condition that must be satisfied for the surface interaction sound to be 
dominant over the aerial turbulence radiation. But it has also been recognized as a 
critical condition in ocean wave studies, a condition under which ocean surface waves 
are in a fully nonlinear state where wave-breaking is the main feature of the surface 
motion (Phillips 1977). The physical mechanisms of ocean-sound production in this 
case are obviously different from both wave-wave interaction and pure turbulence 
radiation; processes such as splashing of water sprays on the ocean surface by 
breaking waves take over the leading role in generating noise. 

This then leads us to conclude that the Brekhovskikh theory of ocean-sound 
generation by surface waves may not really be physically relevant ; weakly nonlinear 
interactions between ocean waves are probably not a significant contributor to 
oceanic noise. 

Now it is instructive to compare the problem discussed here with that in which 
the turbulent flow is over a flexible material surface that can support subsonic 
evanescent waves. In  view of the similarity between the geometries of the two 
problems, there should be no difficulty in examining the material surface situation 
by following the method presented in this paper, and corresponding results can easily 
be obtained. However, since there will never be any breaking phenomena in that case 
and the surface motions there, if nonlinear at all, can always be regarded as ‘weakly 
nonlinear ’, interactions of surface motions (and probably interactions between 
surface motions and turbulence) are then probably the dominant sources of high- 
frequency noise, provided the turbulence intensity is sufficiently strong to signifi- 
cantly deform the surface. Howe (1985) has suggested this possibility and roughly 
estimated some specific situations. Though it might be possible that nonlinear surface 
motions become important for some particular material surfaces, that is not so for 
the ocean-sound problem because the ocean surface would be bound to break ! Fully 
nonlinear effects then provide a more efficient and dominant source of sound; weakly 
nonlinear interactions are not acoustically important in the ocean. 

6. Conclusions 
The mechanism of sound generation by weakly nonlinear interactions of ocean 

surface waves has been examined. The problem has been solved by making use of 
the appropriate form of Lighthill’s acoustic analogy rather than the usual method 
of matched expansions in the Brekhovskikh scheme. This allows us to take account 
also of the effect of turbulent airflow. It has been shown that the aerial turbulence 
radiates a sound which overwhelms that of weakly nonlinear interacting surface 
waves at low frequency and small wind speed. We have shown that the wave-wave 
interaction mechanism becomes important only at high frequency and high wind. 
But it has been found that the condition for this mechanism to be appreciable, 
compared with the turbulent airflow, implies the precise condition at  which fully 
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nonlinear surface motions occur. Other more important physical mechanisms then 
take over the leading role. We then come to the conclusion that weakly nonlinear 
interactions of surface waves may not be a significant source of underwater sound; 
the Brekhovskikh theory is probably not relevant to the natural ocean. 
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